【答读者问25】如何把一个pandas计算的指标改造成一个backtrader的指标?
作者:yunjinqi 类别:
日期:2021-12-23 18:08:39
阅读:2974 次 消耗积分:0 分
在【答读者问23】计算指标的时候是直接使用pandas计算好指标加载进去速度快,还是在backtrader中计算指标速度快?经过一个简单的测试,发现在pandas中计算指标然后加载开高低收等数据及指标值到backtrader中和在backtrader直接计算指标,如果都是用向量的方法,速度是差不多的。今天正好有读者咨询,如果把pandas中计算好的指标改造成backtrader的指标,本篇文章就做一个示范。在开始之前,backtrader的教程部分,已经讲解过好几篇关于backtrader技术指标的相关问题,以下文章供参考:
47、backtrader的一些基本概念—技术指标(indicator)的使用教程
48、backtrader的一些基本概念----如何创建一个新的技术指标(indicator)-(2021-10-17更新)
49、【backtrader股票策略】如何实现跨周期调用技术指标的策略?
75 [backtrader期货策略]十大经典策略-分时均线交叉策略
好了,开始今天的主题~
问题:有一个pandas计算的指标,希望能够转换到backtrader中,如何实现呢?pandas计算的公式主要内容如下:
def get_mtm_atr(df):
# 对mtm计算atr指标,在原有数据的基础上,输出增加了一个列,mtm_atr
col_list = list(df.columns)
df['mtm_l'] = df['low'] / df['low'].shift(n1) - 1
df['mtm_h'] = df['high'] / df['high'].shift(n1) - 1
df['mtm_c'] = df['close'] / df['close'].shift(n1) - 1
df['mtm_c1'] = df['mtm_h'] - df['mtm_l']
df['mtm_c2'] = abs(df['mtm_h'] - df['mtm_c'].shift(1))
df['mtm_c3'] = abs(df['mtm_l'] - df['mtm_c'].shift(1))
df['mtm_tr'] = df[['mtm_c1', 'mtm_c2', 'mtm_c3']].max(axis=1)
df['mtm_atr'] = df['mtm_tr'].rolling(window=n1, min_periods=1).mean()
return df[col_list+['mtm_atr']]
我们继续接着【答读者问23】的代码,测试一下在pandas中实现mtm_atr指标与在backtrader中实现mtm_atr指标。
import numpy as npimport pandas as pdimport random
import datetimeimport backtrader as bt
import plotly.offline as pyimport plotly.graph_objs as go"""
# 生成一个1万,10万,100万,1000万的随机数,保存本地,行程csv文件。
# 然后分别使用两种方法读取,计算指标
# 方法一:使用pandas读取数据,并计算mtm_atr指标,分别保存为两个新的列:"mtm_atr"并adddata到cerebro中,写策略的时候,就不再计算mtm_atr指标
# 方法二:读取csv文件形成feed,然后adddata到cerebro中,然后在策略里面计算mtm_atr指标
# 测试在不同的数据量级别下使用的时间
"""def generate_random_n_bar_df(n):
start_datetime = datetime.datetime(1990,1,1,9,0,0)
# bar的数据和时间都是乱生成的,估计没有那种行情是这种,但是应该是不影响测试结果的可靠性
result=[[random.randint(100,200),random.randint(100,200),random.randint(100,200),random.randint(100,200),random.randint(100,200),random.randint(100,200)] for i in range(n)]
result_df = pd.DataFrame(result,columns=['open',"high","low","close","volume","openinterest"])
result_df.index=pd.to_datetime([start_datetime+datetime.timedelta(seconds=i) for i in list(range(n))])
return result_df# 从1000到100万的bar的数目模拟生成for i in range(1,21):
n=i*1000
data = generate_random_n_bar_df(n)
data.to_csv(f"data_{n}.csv")
print(f"{n}个bar的模拟数据成功保存到工作目录")
# 直接使用pandas的方法,非直接使用backtrader计算指标class ExtendPandasFeed(bt.feeds.PandasData):
params = (
('datetime', 0),
('open', 1),
('high', 2),
('low', 3),
('close', 4),
('volume', 5),
('openinterest', 6),
("mtm_atr",7),
)
lines = ('mtm_atr',)
datafields = [
'datetime', 'open', 'high', 'low', 'close', 'volume', 'openinterest',"mtm_atr"
]
def start(self):
super(ExtendPandasFeed, self).start()
# reset the iterator on each start
self._rows = self.p.dataname.itertuples()
def _load(self):
try:
row = next(self._rows)
except StopIteration:
return False
# Set the standard datafields - except for datetime
# print(self.getlinealiases())
for datafield in self.getlinealiases():
if datafield == 'datetime':
continue
# get the column index
colidx = getattr(self.params, datafield)
# print(datafield,colidx)
if colidx < 0:
# column not present -- skip
continue
# get the line to be set
line = getattr(self.lines, datafield)
# print(colidx)
# indexing for pandas: 1st is colum, then row
line[0] = row[colidx]
# datetime
colidx = getattr(self.params, 'datetime')
tstamp = row[colidx]
# convert to float via datetime and store it
dt = pd.to_datetime(tstamp)
dtnum = bt.date2num(dt)
# get the line to be set
line = getattr(self.lines, 'datetime')
line[0] = dtnum # Done ... return
return Trueclass NotDirectStrategy(bt.Strategy):
# params = (('short_window',10),('long_window',60))
params = {"n1":20}
def log(self, txt, dt=None):
''' log信息的功能'''
dt = dt or bt.num2date(self.datas[0].datetime[0])
print('%s, %s' % (dt.isoformat(), txt))
def __init__(self):
# 一般用于计算指标或者预先加载数据,定义变量使用
pass
def next(self):
# Simply log the closing price of the series from the reference
# self.log(f"工商银行,{self.datas[0].datetime.date(0)},收盘价为:{self.datas[0].close[0]}")
# self.log(f"short_ma:{self.short_ma[0]},long_ma:{self.long_ma[0]}")
# 得到当前的size
data = self.datas[0]
self.log(f"close:{data.close[0]},mtm_atr:{data.mtm_atr[0]}")
# def notify_order(self, order):# if order.status in [order.Submitted, order.Accepted]:# # order被提交和接受# return# if order.status == order.Rejected:# self.log(f"order is rejected : order_ref:{order.ref} order_info:{order.info}")# if order.status == order.Margin:# self.log(f"order need more margin : order_ref:{order.ref} order_info:{order.info}")# if order.status == order.Cancelled:# self.log(f"order is concelled : order_ref:{order.ref} order_info:{order.info}")# if order.status == order.Partial:# self.log(f"order is partial : order_ref:{order.ref} order_info:{order.info}")# # Check if an order has been completed# # Attention: broker could reject order if not enougth cash# if order.status == order.Completed:# if order.isbuy():# self.log("buy result : buy_price : {} , buy_cost : {} , commission : {}".format(# order.executed.price,order.executed.value,order.executed.comm))
# else: # Sell# self.log("sell result : sell_price : {} , sell_cost : {} , commission : {}".format(# order.executed.price,order.executed.value,order.executed.comm))
# def notify_trade(self, trade):# # 一个trade结束的时候输出信息# if trade.isclosed:# self.log('closed symbol is : {} , total_profit : {} , net_profit : {}' .format(# trade.getdataname(),trade.pnl, trade.pnlcomm))# if trade.isopen:# self.log('open symbol is : {} , price : {} ' .format(# trade.getdataname(),trade.price))def get_mtm_atr(df,n1):
# 对mtm计算atr指标,在原有数据的基础上,输出增加了一个列,mtm_atr
col_list = list(df.columns)
df['mtm_l'] = df['low'] / df['low'].shift(n1) - 1
df['mtm_h'] = df['high'] / df['high'].shift(n1) - 1
df['mtm_c'] = df['close'] / df['close'].shift(n1) - 1
df['mtm_c1'] = df['mtm_h'] - df['mtm_l']
df['mtm_c2'] = abs(df['mtm_h'] - df['mtm_c'].shift(1))
df['mtm_c3'] = abs(df['mtm_l'] - df['mtm_c'].shift(1))
df['mtm_tr'] = df[['mtm_c1', 'mtm_c2', 'mtm_c3']].max(axis=1)
df['mtm_atr'] = df['mtm_tr'].rolling(n1,min_periods=1).mean()
# df = df.dropna()
# print(df[df.index>=pd.to_datetime("1990-01-01 09:00:19")])
return df[col_list+['mtm_atr']]
def run_not_direct_data(n):
data_name = f"data_{n}.csv"
df = pd.read_csv(data_name,index_col=0)
df.index = pd.to_datetime(df.index)
# 计算指标
df = get_mtm_atr(df,20)
# print(df)
datetime_list = list(df.index)
# 添加cerebro
cerebro = bt.Cerebro()
# 添加策略
cerebro.addstrategy(NotDirectStrategy)
# 准备数据
params = dict(
fromdate = datetime_list[0],
todate = datetime_list[-1],
timeframe = bt.TimeFrame.Minutes,
compression = 1,
)
feed = ExtendPandasFeed(dataname=df,**params)
# 添加合约数据
cerebro.adddata(feed, name = "xxx")
cerebro.broker.setcommission(commission=0.0005)
# 添加资金
cerebro.broker.setcash(100000.0)
# 开始运行
cerebro.run()run_not_direct_data(1000) # 直接加载数据到backtrader中,然后计算相应的指标,由于backtrader自带的指标库中没有mtm_atr指标,所以,需要我们自建一个指标class MtmAtr(bt.Indicator):
# 需要在lines里面声明指标带的名称,line的名称,可以使用self.lines.xxx或者self.l.xxx或者甚至使用self.xxx
lines = ('mtm_atr','mtm_tr')
# 可能需要的参数值,可以不需要
params = (("n1",20),)
# 可以在init里面计算相应的逻辑,能够在init实现,就可以只使用init,如果在init里面不能够完全实现,那么,就可以考虑使用next和once
# 另外,如果想要避免因为数据不足导致计算指标不准,希望等到数据充足之后在计算,可以增加一个self.addminperiod
def __init__(self):
self.addminperiod(self.p.n1-1)
# 保存今日的价格
pre_low = self.data.low(-1*self.p.n1)
pre_high = self.data.high(-1*self.p.n1)
pre_close = self.data.close(-1*self.p.n1)
self.mtm_l = self.data.low/pre_low - 1
self.mtm_h = self.data.high/pre_high - 1
self.mtm_c = self.data.close/pre_close -1
# self.mtm_tr = bt.Max(mtm_c1,mtm_c2,mtm_c3)
# 向量法计算会忽略一部分pandas计算的时候时间不够就开始计算平均值的问题,min_periods,和原先的pandas计算相比,
# 忽略了一部分数据,直到全部数据够平均才会开始计算
# self.lines.mtm_atr = bt.indicators.SMA(self.mtm_tr,period = self.p.n1)
# 保存mtm_tr不为0的bar的根数
self.mtm_tr_bar_num = None
def next(self):
# 在next中计算的时候,在数据不够的时候,如果求最大值,bt.Max需要三个值都存在了,才不会是nan,
# df.max(axis=1)只要有一列不为nan,就会出现不为nan的值,这导致了如果使用bt.Max会和原先pandas计算的结果不一样
# 所以,mtm_c1,mtm_c2,mtm_c3,mtm_atr也需要在向量中计算
# 下面的方法可以和pandas计算的结果一致。
# 不太建议使用这种方法去实现,更好的方法是用上面的向量法
try:
mtm_c1 = self.mtm_h[0] - self.mtm_l[0]
except:
mtm_c1=-np.inf try:
mtm_c2 = abs(self.mtm_h[0] - self.mtm_c[-1])
except:
mtm_c2=-np.inf try:
mtm_c3 = abs(self.mtm_l[0]-self.mtm_c[-1])
except:
mtm_c3=-np.inf if mtm_c1!= -np.inf or mtm_c2!= -np.inf or mtm_c3!= -np.inf:
mtm_tr_value = self.mtm_tr[0] = max(mtm_c1,mtm_c2,mtm_c3)
else:
mtm_tr_value = np.NaN if self.mtm_tr_bar_num is not None:
self.mtm_tr_bar_num+=1
if self.mtm_tr_bar_num is None and not np.isnan(mtm_tr_value):
self.mtm_tr_bar_num = 1
# print(bt.num2date(self.data.datetime[0]),mtm_tr_value,self.mtm_tr_bar_num)
if self.mtm_tr_bar_num>=self.p.n1:
self.lines.mtm_atr[0]=sum(self.mtm_tr.get(size = self.p.n1))/self.p.n1 if self.mtm_tr_bar_num>0 and self.mtm_tr_bar_num<self.p.n1:
self.lines.mtm_atr[0]=sum(self.mtm_tr.get(size = self.mtm_tr_bar_num))/ self.mtm_tr_bar_num
class DirectStrategy(bt.Strategy):
# params = (('short_window',10),('long_window',60))
params = {"n1":20}
def log(self, txt, dt=None):
''' log信息的功能'''
dt = dt or bt.num2date(self.datas[0].datetime[0])
print('%s, %s' % (dt.isoformat(), txt))
def __init__(self):
# 一般用于计算指标或者预先加载数据,定义变量使用
self.mtm_atr = MtmAtr(self.datas[0],n1 = self.p.n1)
def next(self):
# Simply log the closing price of the series from the reference
# self.log(f"工商银行,{self.datas[0].datetime.date(0)},收盘价为:{self.datas[0].close[0]}")
# self.log(f"short_ma:{self.short_ma[0]},long_ma:{self.long_ma[0]}")
# 得到当前的size
data = self.datas[0]
self.log(f"close:{data.close[0]},mtm_atr:{self.mtm_atr[0]}")
# def notify_order(self, order):# if order.status in [order.Submitted, order.Accepted]:# # order被提交和接受# return# if order.status == order.Rejected:# self.log(f"order is rejected : order_ref:{order.ref} order_info:{order.info}")# if order.status == order.Margin:# self.log(f"order need more margin : order_ref:{order.ref} order_info:{order.info}")# if order.status == order.Cancelled:# self.log(f"order is concelled : order_ref:{order.ref} order_info:{order.info}")# if order.status == order.Partial:# self.log(f"order is partial : order_ref:{order.ref} order_info:{order.info}")# # Check if an order has been completed# # Attention: broker could reject order if not enougth cash# if order.status == order.Completed:# if order.isbuy():# self.log("buy result : buy_price : {} , buy_cost : {} , commission : {}".format(# order.executed.price,order.executed.value,order.executed.comm))
# else: # Sell# self.log("sell result : sell_price : {} , sell_cost : {} , commission : {}".format(# order.executed.price,order.executed.value,order.executed.comm))
# def notify_trade(self, trade):# # 一个trade结束的时候输出信息# if trade.isclosed:# self.log('closed symbol is : {} , total_profit : {} , net_profit : {}' .format(# trade.getdataname(),trade.pnl, trade.pnlcomm))# if trade.isopen:# self.log('open symbol is : {} , price : {} ' .format(# trade.getdataname(),trade.price))
def run_direct_data(n):
data_name = f"data_{n}.csv"
df = pd.read_csv(data_name,index_col=0)
df.index = pd.to_datetime(df.index)
datetime_list = list(df.index)
# 添加cerebro
cerebro = bt.Cerebro()
# 添加策略
cerebro.addstrategy(DirectStrategy)
# 准备数据
params = dict(
fromdate = datetime_list[0],
todate = datetime_list[-1],
timeframe = bt.TimeFrame.Minutes,
compression = 1,
dtformat=('%Y-%m-%d %H:%M:%S'), # 日期和时间格式
tmformat=('%H:%M:%S'), # 时间格式
)
feed = bt.feeds.PandasDirectData(dataname=df,**params)
# 添加合约数据
cerebro.adddata(feed, name = "xxx")
cerebro.broker.setcommission(commission=0.0005)
# 添加资金
cerebro.broker.setcash(100000.0)
# 开始运行
cerebro.run()
run_direct_data(1000)# 测试运行时间direct_time_list =[]not_direct_time_list =[]bar_num_list =[]for i in range(1,21):
bar_num=i*1000
begin_time = datetime.datetime.now()
run_direct_data(bar_num)
end_time = datetime.datetime.now()
consume_time = (end_time-begin_time).seconds
direct_time_list.append(consume_time)
begin_time = datetime.datetime.now()
run_not_direct_data(bar_num)
end_time = datetime.datetime.now()
consume_time = (end_time-begin_time).seconds
not_direct_time_list.append(consume_time)
bar_num_list.append(bar_num)
# 画图data = [
go.Scatter(
x=bar_num_list,
y=not_direct_time_list,
name = '提前使用pandas计算指标消耗的时间'
),
go.Scatter(
x=bar_num_list,
y=direct_time_list,
name = '在backtrader中计算指标消耗的时间'
)]
layout = go.Layout(
title = '随着K线数目增加,两种计算指标的方式消耗的时间')
fig = go.Figure(data = data)# 步骤四fig.update_layout(
title= '随着K线数目增加,两种计算指标的方式消耗的时间',
xaxis_title="bar_num",
yaxis_title="消耗时间(s)",
# xaxis = {"type":"log"})fig.show()
意料之中的backtrader会跑输,毕竟在next中计算了好多的东西,降低了速度。
智慧、心灵、财富,总要有一个在路上,愿我们能在人生的道路上,不断成长、不断成熟~~~
感兴趣可以关注我的专栏:
my_quant_study_note:分享一些关于量化投资、量化交易相关的思考
backtrader量化投资回测与交易:本专栏免费,分享backtrader相关的内容。
量化投资神器-backtrader源码解析-从入门到精通:本专栏目前收费299元,预计更新100篇策略(更新中)+36篇backtrader讲解(已完成)+backtrader源码分析。