代码如下:
import numpy as np import matplotlib.pyplot as plt import seaborn as sns from scipy import stats import pandas as pd import matplotlib # 1. 设置Matplotlib后端(解决AttributeError) matplotlib.use('TkAgg') # 或 'Qt5Agg' # 2. 解决中文乱码(使用系统支持的字体) try: # plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] # Windows plt.rcParams['font.sans-serif'] = ['Songti SC'] # macOS except: plt.rcParams['font.sans-serif'] = ['SimHei'] # 备用方案 plt.rcParams['axes.unicode_minus'] = False # 设置随机种子 np.random.seed(42) # 生成三种偏态分布数据 distributions = [ ("右偏", np.random.lognormal(mean=0, sigma=0.5, size=1000), 'skyblue'), ("对称", np.random.normal(loc=0, scale=1, size=1000), 'lightgreen'), ("左偏", -np.random.gamma(2, 2, 1000), 'salmon') ] # 创建3x3子图布局 fig, axes = plt.subplots(3, 3, figsize=(18, 15), gridspec_kw={'height_ratios': [3, 3, 3]}) # -------------------------- # 遍历每个分布绘制三列图表 # -------------------------- for row_idx, (label, data, color) in enumerate(distributions): # 当前行的三个子图 ax_hist = axes[row_idx, 0] # 直方图 ax_box = axes[row_idx, 1] # 箱线图 ax_qq = axes[row_idx, 2] # QQ图 # -------------------------- # 1. 直方图(第一列) # -------------------------- sns.histplot(data, bins=30, kde=True, color=color, ax=ax_hist) ax_hist.set_title(f'{label}分布直方图', fontsize=12) ax_hist.set_xlabel('数值') ax_hist.set_ylabel('频数') # -------------------------- # 2. 箱线图(第二列) # -------------------------- df = pd.DataFrame({'数值': data, '分布类型': [label] * len(data)}) sns.boxplot( x='数值', y='分布类型', data=df, color=color, orient='h', width=0.6, ax=ax_box ) ax_box.set_title(f'{label}分布箱线图', fontsize=12) ax_box.set_xlabel('数值') ax_box.set_ylabel('') ax_box.set_yticklabels([]) # 隐藏y轴标签 # -------------------------- # 3. QQ图(第三列) # -------------------------- (quantiles, values), (slope, intercept, _) = stats.probplot(data, dist="norm") ax_qq.scatter(quantiles, values, color=color, s=20, alpha=0.6) ax_qq.plot(quantiles, slope * quantiles + intercept, color='red', linestyle='--', linewidth=1) ax_qq.set_title(f'{label}分布QQ图', fontsize=12) ax_qq.set_xlabel('理论分位数') ax_qq.set_ylabel('样本分位数') # -------------------------- # 全局布局调整 # -------------------------- plt.tight_layout() plt.subplots_adjust(hspace=0.4, wspace=0.3) # 调整行间距和列间距 fig.suptitle('偏态分布特征可视化 (3x3布局)', y=1.02, fontsize=14) plt.show()
系统当前共有 404 篇文章