首先,必须要说明的是,这个不影响pyfolio的正常使用。可以忽略或者使用忽略
import warnings warnings.filterwarnings("ignore")
接下来,梳理一下,为啥会出现这样的警告信息。后面的大家不用看了,几乎没啥含金量。
pyfolio的来源
pyfolio和zipline都来自过去著名的量化平台quantopian,zipline是其回测和交易框架,pyfolio是其绩效分析框架,pyfolio是对zipline的支持,所以,虽然zipline和pyfolio都已经开源了,但是pyfolio还是保存着一些从zipline获取的依赖信息。
pyfolio中都哪些函数使用了zipline.assets
pos.py中import zipline.assets中的Equty和Future,用于确定资产的杠杆,如果没有zipline这个,资产的倍数就按照1倍来计算。实际上,我们从backtrader中的analyzer中获取的postions的信息是已经计算过杠杆的了,所以,这里不用考虑杠杆。
try: from zipline.assets import Equity, Future ZIPLINE = Trueexcept ImportError: ZIPLINE = False warnings.warn( 'Module "zipline.assets" not found; mutltipliers will not be applied' + ' to position notionals.' ) def extract_pos(positions, cash): """ Extract position values from backtest object as returned by get_backtest() on the Quantopian research platform. Parameters ---------- positions : pd.DataFrame timeseries containing one row per symbol (and potentially duplicate datetime indices) and columns for amount and last_sale_price. cash : pd.Series timeseries containing cash in the portfolio. Returns ------- pd.DataFrame Daily net position values. - See full explanation in tears.create_full_tear_sheet. """ positions = positions.copy() positions['values'] = positions.amount * positions.last_sale_price cash.name = 'cash' values = positions.reset_index().pivot_table(index='index', columns='sid', values='values') if ZIPLINE: for asset in values.columns: if type(asset) in [Equity, Future]: values[asset] = values[asset] * asset.price_multiplier values = values.join(cash).fillna(0) # NOTE: Set name of DataFrame.columns to sid, to match the behavior # of DataFrame.join in earlier versions of pandas. values.columns.name = 'sid' return values
在utils.py中,有下面的几个函数:
第一个用于标准化资产的名字,第二个用于从zipline的回测结果中提收益率、持仓、交易和杠杆信息,在使用pyfolio对接backtrader的时候,我们是直接从backtrader的analyzer中直接获取的,没有用到zipline.
def format_asset(asset): """ If zipline asset objects are used, we want to print them out prettily within the tear sheet. This function should only be applied directly before displaying. """ try: import zipline.assets except ImportError: return asset if isinstance(asset, zipline.assets.Asset): return asset.symbol else: return assetdef extract_rets_pos_txn_from_zipline(backtest): """ Extract returns, positions, transactions and leverage from the backtest data structure returned by zipline.TradingAlgorithm.run(). The returned data structures are in a format compatible with the rest of pyfolio and can be directly passed to e.g. tears.create_full_tear_sheet(). Parameters ---------- backtest : pd.DataFrame DataFrame returned by zipline.TradingAlgorithm.run() Returns ------- returns : pd.Series Daily returns of strategy. - See full explanation in tears.create_full_tear_sheet. positions : pd.DataFrame Daily net position values. - See full explanation in tears.create_full_tear_sheet. transactions : pd.DataFrame Prices and amounts of executed trades. One row per trade. - See full explanation in tears.create_full_tear_sheet. Example (on the Quantopian research platform) --------------------------------------------- >>> backtest = my_algo.run() >>> returns, positions, transactions = >>> pyfolio.utils.extract_rets_pos_txn_from_zipline(backtest) >>> pyfolio.tears.create_full_tear_sheet(returns, >>> positions, transactions) """ backtest.index = backtest.index.normalize() if backtest.index.tzinfo is None: backtest.index = backtest.index.tz_localize('UTC') returns = backtest.returns raw_positions = [] for dt, pos_row in backtest.positions.iteritems(): df = pd.DataFrame(pos_row) df.index = [dt] * len(df) raw_positions.append(df) if not raw_positions: raise ValueError("The backtest does not have any positions.") positions = pd.concat(raw_positions) positions = pos.extract_pos(positions, backtest.ending_cash) transactions = txn.make_transaction_frame(backtest.transactions) if transactions.index.tzinfo is None: transactions.index = transactions.index.tz_localize('utc') return returns, positions, transactions
系统当前共有 426 篇文章